The generator matrix

 1  0  0  0  1  1  1  1  1  1  1 X^2  0 X^2+X  0  X X^2  1  1 X^2+X  1  X  1  1  1 X^2+X  1  X  0  1  1  0  1  X  1 X^2+X  1 X^2 X^2 X^2+X  X  1 X^2+X  0  1  1  X  1  X  X  1  X  1  1 X^2+X  0 X^2  1  1  1  1  1  1
 0  1  0  0  0  0  1 X^2+X+1  1  1 X^2+X  1  1  X  1  X  1  0  X X^2+X X^2+X+1  0  0 X^2  1  1 X^2+X+1  1  1 X^2+X X+1  1 X^2+1  X X^2+1 X^2 X^2  0  1  1  1 X+1 X^2+X X^2+X  0  1  1  0  1 X^2  X  1 X^2+X  0  1  X X^2 X^2+1  0  X  1 X^2+X+1  1
 0  0  1  0  0  1  0  1 X^2+1 X^2  1 X^2+X+1 X+1  1  X  1 X+1 X^2+X X+1  X X^2+X+1  1 X^2+1 X^2+X X+1 X^2+X+1 X^2  1  0  0  X  X X+1  1 X^2+1 X^2+X X^2+X  1 X^2 X+1  0 X^2+1  1  1  1  0 X^2 X+1 X^2+X+1  X  1 X+1  X X^2  X  1  1  0  0  0  0  1 X^2+X+1
 0  0  0  1  1 X+1 X^2+X+1 X^2+1 X^2  X X^2+X X^2+1  0 X^2+X+1 X+1  0  X  X  0  1 X^2+1 X^2+1  1 X^2+1 X^2+X X^2+X+1  X X+1 X^2+X+1 X^2+1 X^2+X+1  X X^2+X  X X^2+1  1  1  1 X^2+1  0  1 X^2+X X^2+1 X^2+X X^2+X+1  1 X^2+1 X^2 X^2+1  1  1 X^2  0  1  X  X  1  1  X X^2+1  X X^2+1  1
 0  0  0  0  X  X  X  X  0  0  0 X^2+X X^2 X^2+X X^2+X X^2 X^2  0  0 X^2+X X^2+X X^2+X X^2+X  X X^2  X  0 X^2+X X^2+X X^2+X X^2  X X^2+X  X X^2  0 X^2 X^2 X^2  X  0 X^2+X  0 X^2+X  0 X^2 X^2+X  X X^2  0 X^2+X  0 X^2 X^2 X^2+X X^2  0 X^2+X  X  0  0  0  0
 0  0  0  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0  0 X^2  0 X^2  0 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2  0  0  0  0 X^2 X^2  0 X^2  0 X^2  0  0 X^2 X^2  0 X^2  0 X^2  0  0  0 X^2 X^2 X^2 X^2  0 X^2  0  0 X^2 X^2

generates a code of length 63 over Z2[X]/(X^3) who�s minimum homogenous weight is 54.

Homogenous weight enumerator: w(x)=1x^0+232x^54+646x^55+669x^56+1380x^57+1559x^58+2080x^59+2504x^60+2856x^61+2750x^62+3358x^63+2891x^64+2970x^65+2284x^66+2356x^67+1478x^68+1214x^69+712x^70+390x^71+185x^72+114x^73+73x^74+28x^75+14x^76+10x^77+6x^78+6x^79+2x^80

The gray image is a linear code over GF(2) with n=252, k=15 and d=108.
This code was found by Heurico 1.16 in 41.5 seconds.